

# CLOUD COMPUTING: DROPPING THE COST OF OPTIMIZATION

ANDRES COLLART

JUNE 23<sup>RD</sup>, 2016



### 1. Mathematical Optimization

- 1. Two Case Studies
- 2. Applications
- 3. Requirements
- 2. Traditional Approach
- 3. Cloud Approach
- 4. Cost Comparison

## WHAT IS MATHEMATICAL OPTIMIZATION?



Based on: Competing on Analytics, Davenport and Harris, 2007 https://www.optimizedfinancialsystems.com/solutions/what-it-is/



# CASE STUDY: UPS ORION

**2016 Edelman Award Finalist** 



## UPS - PROBLEM

- 55,000 routes in North America
- 120 stops per route





## **UPS ORION**

The On-Road Integrated Optimization and Navigation (ORION) was built and deployed over 9 year by 500-700 full-time staff.

- More than just a TSP solver.
  - Considers customer/driver routine preferences
- Estimated cost of \$250M

"While most of America is sleeping, ORION is solving tens of thousands of route optimizations per minute." - UPS



## **UPS ORION**





### **UPS ORION - MY CHOICE**

Delivery alerts via phone or email a day in advance so you can plan ahead.

Rescheduling to a new delivery date that fits your schedule for just \$5.

Rerouting to another address for just \$5.

Source: UPS Website



١.

3

### **UPS ORION - DEPLOYMENT**

To deploy to all 55,000 routes UPS uses 700 trainers that work with each driver for six days.







### **UPS ORION - RESULTS**







\$300,000,000 to \$400,000,000

100,000 metric tons 10,000,000 gallons

# Annually



# CASE STUDY: FORD CRASH TESTING

**INFORMS Wagner Prize Finalist** 

By Ford and University of Michigan



#### FORD CRASH TESTING - PROBLEM



#### Test vehicle ~ \$250,000 each



## FORD CRASH TESTING - PROBLEM

| Detailed Gantt Chart                                      |  |  |  |  |  |  |
|-----------------------------------------------------------|--|--|--|--|--|--|
| 9<br>Fri SarBurMorTuewle(Thu Fri S<br>26 27 28 29 1 2 3 4 |  |  |  |  |  |  |
|                                                           |  |  |  |  |  |  |
|                                                           |  |  |  |  |  |  |

Vehicle crash tests have complex schedules!



## FORD CRASH TESTING - OPTIMIZATION

- Determine
  - Assignment of tests to prototype vehicles
  - Starting time of each test
- Subject to
  - Conflict and precedence restrictions
  - Test release dates, durations, due dates
  - Vehicle delivery timing
- Optimizing
  - Vehicle utilization
  - Adherence to timing targets
- Computation
  - Ford's High Performance Computing Cluster





## FORD CRASH TESTING - RESULTS

- Save vehicles
  - ~\$250,000 each
- Faster development cycle
- Free up engineer planning time
  - What-If scenarios
- Schedule quality
- Improved record-keeping
  - Centralized
  - Formalized
  - Standardized



# **APPLICATIONS OF OPTIMIZATION**



# APPLICATIONS OF OPTIMIZATION

#### Production

- Inventory Optimization
- Production Mix
- Machine Allocation
- Distribution
  - Vehicle Routing
  - Driver Scheduling
  - Less-than-Truckload Planning
- Service
  - Workforce Scheduling
  - Advertising and Marketing Mix



# APPLICATIONS OF OPTIMIZATION

- Energy
  - Unit Commitment
  - Network Flow
  - Hydropower System Flow
- Government
  - Combinatorial Auction
  - Traffic Flow
  - Queuing Management
- Telecom
  - Network Design
  - Field Service Scheduling



# HOW DO WE DO IT?























# TRADITIONAL APPROACH



### TRADITIONAL APPROACH



- Gurobi License cost: \$12,000 USD
- ILOG CPLEX License cost: \$14,800 USD

Single user license Support/Updates not included or limited inclusion Not including hardware







# TRADITIONAL APPROACH

- Strengths
  - Keep data in-house
    - ITAR
    - IT Security
  - "Lazy" constraints
  - No internet required (after setup)
- Limitations
  - High commitment required
  - Discrete machines and licenses
  - Low flexibility



# **CLOUD APPROACH**



### CLOUD SERVICES- WHAT ARE THEY?





### **CLOUD APPROACH**

- Software As a Service (SAS)
  - Gurobi Cloud
  - IBM Decision Optimization on Cloud





## GUROBI CLOUD- MANUAL APPROACH

- 1. Get access
- 2. Install Gurobi (no license file)

3. Launch machines



| Machine list                              |       |       |                 |
|-------------------------------------------|-------|-------|-----------------|
| Machine Name                              | Туре  | State | Time Started    |
| ec2-54-152-85-119.compute-1.amazonaws.com | light | idle  | 2 minutes ago   |
| Download license file                     |       |       | 🗙 Kill 1 machir |

4. Manage machines

#### **GUROBI CLOUD- AUTOMATED APPROACH**

```
8 import time
 9 from instantcloud import InstantCloudClient
10 from gurobipy import *
11
12 def is machine ready(machines):
13
      ready = False
14
      for machine in machines:
15
           if machine['state'] == 'idle' or \
              machine['state'] == 'running':
16
17
               ready = True
18
               break
19
      return ready
20
21
22 ic = InstantCloudClient(YOUR_ACCESS_ID, YOUR_SECRET_KEY)
23 machines = ic.getmachines()
24 if len(machines) < 1:
25
      machines = ic.launchmachines(numMachines=1, machineType="c4.large")
27 while not is_machine_ready(machines):
      print 'Machine not ready. Sleeping for 30 seconds'
28
29
      time.sleep(30)
30
      machines = ic.getmachines()
31
32 machinename = None
33 userpassword = None
34 for machine in machines:
35
      if machine['state'] == 'idle' or \
          machine['state'] == 'running':
36
37
           machinename = machine['DNSName']
38
           userpassword = machine['userPassword']
39
           break
40
41 env = Env("gurobi.log", computeServers=machinename, \
      port=GRB.DEFAULT_CS_PORT, password=userpassword)
42
```

## CLOUD ADVANTAGES

- No Commitment
- Fast Deployment
  - In less than 20 minutes can be fully licensed
- Technical Support included
- Bursts
  - Want 10 computers for an hour? That's about \$100.
  - Need to solve one large problem once?
- Testing
  - Can test performance under different computer configurations
- Multi-User



## **CLOUD LIMITATIONS**

- No "lazy" constraints
  - Lazy constraints are not supported by Gurobi Cloud
- Data must leave facility
  - Automatically encoded using 256-bit AES encryption



# COMPARISON





![](_page_35_Picture_1.jpeg)

### COMPARISON

![](_page_36_Figure_1.jpeg)

Cloud vs Non-Cloud Options

Break-even at about 62 hours per month

![](_page_36_Picture_4.jpeg)

## WHAT IS NOW ECONOMICAL?

| Optimization             | Results                                                                                  | Frequency          | Cloud Cost          |
|--------------------------|------------------------------------------------------------------------------------------|--------------------|---------------------|
| Production<br>Scheduling | <ul> <li>Machine utilization</li> <li>Order tardiness</li> <li>Order makespan</li> </ul> | Daily or<br>Weekly | \$5-10 per use      |
| Vehicle Routing          | <ul> <li>Efficiency</li> <li>Fleet size/cost</li> <li>Fuel consumption</li> </ul>        | Daily              | \$5-10 per use      |
| Supply Chain<br>Analysis | <ul><li>Efficiency</li><li>Inventory</li></ul>                                           | Ad-hoc             | \$10-100 per<br>use |

![](_page_37_Picture_2.jpeg)

**QUESTIONS?** 

![](_page_38_Picture_1.jpeg)